头条+腾讯 双杀面经(NLP实习)

本文发于微信公众号:NewBeeNLP,欢迎关注获取更多干货资源。

面试锦囊之面经分享系列,持续更新中。
订阅后台回复"面试",即可加入AI&NLP算法面试交流群。

先说一下背景:本科双非,硕士211,没论文,一段半年的大厂NLP实习,3个TOP5 NLP比赛,1个两位数的数据挖掘比赛。

字节跳动

1面: 60分钟

  • 实习,难点,收获,怎么解决
  • XGBOOST ,LGB,GBDT 的区别
  • 一阶优化器,二阶优化器
  • Attention怎么做,self-attention怎么做
  • Transformer细节,Bert细节(多头和缩放)
  • 过拟合怎么解决
  • 标签平滑怎么做的
  • 交叉熵,相对熵
  • Bagging, boosting , 偏差,方差关系
  • CRF理论与代码实现细节
  • CRF与HMM关系,区别
  • 维特比,beam-search 时间复杂度,区别
  • 「编程题」:编辑距离,完全二叉树的节点个数 (都是很经典的leetcode原题)

2面: 60分钟

  • 实习,竞赛,问了30分钟
  • 开源代码阅读情况
  • XGBOOST ,LGB 生长策略,分类策略
  • BERT细节
  • 少样本情况怎么缓解
  • 「编程题」:15分钟 写一个k-means,没写完时间不够

3面:20分钟

  • 聊人生,说前两面反馈给的好,就不问问题了。
  • HR面: 20分钟
  • 讲一件你觉得很有难度的事,怎么解决的。
  • 来段英语口语。
  • 剩下时间就是问问题时间了。

从开始面试到拿到offer花了3天,字节效率极高。其中1,2面试连续面的,然后太晚了,不然估计3面也会连续面。

腾讯:校招日常实习

1面: 25分钟

  • 实习,竞赛
  • 优化器,系统的讲一下
  • 实际场景下做softmax容易出现一些问题,怎么解决(面试的时候没明白什么意思,面试结束后询问,他是说实际场景做softmax很容易出现下溢问题,这个可以用每个维度减去一个固定值就可以了)
  • 过拟合解决方法,正则项为什么能减缓过拟合
  • 权重衰减等价于哪个正则项
  • 传统机器学习方法了解哪些
  • 「编程题」:打家劫舍II

2面:60分钟+8小时下来做题。。。

  • 实习,问得巨细,怎么和测试沟通,怎么和需求沟通,团队有几人,负责啥,难点是啥,你做了啥
  • 「编程题」:leetcode-887,super egg drop,提前不知道这题是leetcode题,自己一直在硬做,后来给实习同事分享,同事告诉我是leetcode题很难得一道题。这题难的一*,面试里面剩余30分钟没做出来(基本属于刚理解题意),下来之后做了2个小时想出一个暴力解,被打回,第二天,想了3个小时,想到二分解法,被打回,又想了3个小时,想到数学解法。。。过了。(三种解法都对的, 不过面试官要求给出具体的策略和步骤,数学法比较直接可以直接给出,其他两种需要输出最优路径)。太菜了。。。。

3面,GM面:30分钟

比较水,没问技术问题,全程实习竞赛。

HR面

就问了啥时候能去,能去多久这种问题

腾讯流程很长,从官网投递简历,到拿到offer,全程花了20多天。导师和HR很热情,面试完了就在交流了。

随便唠唠

难度上,总体感觉面的两个岗位,除了腾讯二面的编程题,其他都不是很难(可能是只是实习面试的原因),两家没有奇奇怪怪的问题,面试体验都很好,知识点范围基本都在面经百度第一页能找到。不过感觉自己比较幸运,遇到的字节面试官出的题都很常规,我同学面头条出的题,遇到了取数对弈,螺丝螺母匹配等烧脑问题。

在这里插入图片描述

kaiyuan_sjtu CSDN认证博客专家 NewBeeNL
email:kaiyuangao@sjtu.edu.cn,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
本课程隶属于自然语言处理(NLP)实战系列。自然语言处理(NLP)是数据科学里的一个分支,它的主要覆盖的内容是:以一种智能与高效的方式,对文本数据进行系统化分析、理解与信息提取的过程。通过使用NLP以及它的组件,我们可以管理非常大块的文本数据,或者执行大量的自动化任务,并且解决各式各样的问题,如自动摘要,机器翻译,命名实体识别,关系提取,情感分析,语音识别,以及主题分割等等。 一般情况下一个初级NLP工程师的工资从15万-35万不等,所以掌握NLP技术,对于人工智能学习者来讲是非常关键的一个环节。 【超实用课程内容】 课程从自然语言处理的基本概念与基本任务出发,对目前主流的自然语言处理应用进行全细致的讲解,包括文本分类,文本摘要提取,文本相似度,文本情感分析,文本特征提取等,同时算法方包括经典算法与深度学习算法的结合,例如LSTM,BiLSTM等,并结合京东电商评论分类、豆瓣电影摘要提取、今日头条舆情挖掘、饿了么情感分析等过个案例,帮助大家熟悉自然语言处理工程师在工作中会接触到的常见应用的实施的基本实施流程,从0-1入门变成自然语言处理研发工程师。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/25649 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/25649,点击右下方课程资料、代码、课件等打包下载 通过第二课时下载材料
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页